Analysis of Linear Variable Coefficient Delay Differential-algebraic Equations

نویسندگان

  • PHI HA
  • VOLKER MEHRMANN
  • ANDREAS STEINBRECHER
چکیده

The analysis of general linear variable coefficient delay differential-algebraic systems (DDAEs) is presented. The solvability for DDAEs is investigated and a reformulation procedure to regularize a given DDAE is developed. Based on this regularization procedure existence and uniqueness of solutions and consistency of initial functions is analyzed as well as other structural properties of DDAEs like smoothness requirements. We also present some examples to demonstrate that for the numerical solution of a DDAE, a reformulation of the system before applying numerical methods is essential.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic stability of linear delay differential-algebraic equations and numerical methods *

In this paper, we consider the asymptotic stability of linear constant coefficient delay differential-algebraic equations and of &methods, Runge-Kutta methods and linear multistep methods applied to these systems. o 1997 Published by Elsevier Science B.V.

متن کامل

On Solvability and Waveform Relaxation Methods for Linear Variable-coefficient Differential-algebraic Equations

This paper is concerned with the solvability and waveform relaxation methods of linear variable-coefficient differential-algebraic equations (DAEs). Most of the previous works have been focused on linear variable-coefficient DAEs with smooth coefficients and data, yet no results related to the convergence rate of the corresponding waveform relaxation methods has been obtained. In this paper, we...

متن کامل

A numerical method for solving delay-fractional differential and integro-differential equations

‎This article develops a direct method for solving numerically‎ ‎multi delay-fractional differential and integro-differential equations‎. ‎A Galerkin method based on Legendre polynomials is implemented for solving‎ ‎linear and nonlinear of equations‎. ‎The main characteristic behind this approach is that it reduces such problems to those of‎ ‎solving a system of algebraic equations‎. ‎A conver...

متن کامل

Operational matrices with respect to Hermite polynomials and their applications in solving linear differential equations with variable coefficients

In this paper, a new and efficient approach is applied for numerical approximation of the linear differential equations with variable coeffcients based on operational matrices with respect to Hermite polynomials. Explicit formulae which express the Hermite expansion coeffcients for the moments of derivatives of any differentiable function in terms of the original expansion coefficients of the f...

متن کامل

An Integral Collocation Approach Based on Legendre Polynomials for Solving Riccati, Logistic and Delay Differential Equations

In this paper, we propose and analyze some schemes of the integral collocation formulation based on Legendre polynomials. We implement these formulae to solve numerically Riccati, Logistic and delay differential equations with variable coefficients. The properties of the Legendre polynomials are used to reduce the proposed problems to the solution of non-linear system of algebraic equations usi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013